quinta-feira, 17 de agosto de 2017

Ubiquitina

A ubiquitina é uma proteína dos seres vivos eucariotas que possui 76 resíduos de aminoácidos e uma massa molecular de 8,5KDa, estando envolvida em diversos mecanismos celulares, tais como: regulação da progressão do ciclo celular, reparação do DNA, embriogénese, regulação da transcrição, indução da resposta inflamatória, apresentação do antigénio e apoptose. A sua primordial função está relacionada com a degradação de substratos proteicos marcados por poliubiquitinação mediada por um complexo proteico constituído por proteases, o proteossoma 26S. Neste complexo, as proteínas são separadas da ubiquitina e são degradadas por ataques nucleofílicos, dando origem a pequenos péptidos. A ativação da ubiquitina está diretamente relacionada com a enzima E1. O resíduo C-
-terminal da ubiquitina liga-se covalentemente a um resíduo de sulfidril-cisteína da enzima E1 ficando a molécula ativada. A ativação ocorre na presença de Mg2+ e com o consumo de 1 ATP, libertando AMP e pirofosfato. O processo de ativação está incluído numa sequência – ativação, conjugação e ligação. Inicialmente, a enzima E1 ativa a ubiquitina formando um grupo tioéster. Quando esta se encontra ativada, a enzima E2 realiza o transporte até ao substrato a ser utilizado e a enzima E3 (ligase) transfere a ubiquitina ativada. As enzimas envolvidas são codificadas por uma super família de genes, sendo que a enzima E1 é comum à maioria dos organismos eucariotas.
A monoubiquitinização, durante a endocitose, serve como sinal para regular a internalização das proteínas na membrana plasmática. Há também a ubiquitinação das histonas, que influencia modificações da cromatina. A poliubiquitinação marca as proteínas que devem ser degradadas no proteossoma. A regulação do ciclo celular é feita pelas cinases e a atividade destas depende das ciclinas (subunidades reguladoras) e de subunidades inibitórias e o sistema ubiquitina/proteassoma regula a degradação dessas mesmas subunidades: a SCF é responsável pela ubiquinação e proteólise das inibitórias enquanto que o complexo ACP degrada as ciclinas e promove a anafase.
A proteína p53 é uma proteína importante para o controlo do ciclo celular. Caso ocorram danos no DNA, esta proteína bloqueia a progressão do ciclo e ativa as proteínas que o reparam e, na situação de impossibilidade de reparação, ativa a apoptose celular. A p53 é degradada através do proteossoma, sofrendo poliubquitinação. No entanto, a sua degradação pode ser acelerada na presença da oncoproteína do vírus do papiloma humano (HPV), comprometendo sua função anti-cancerígena. Assim, a ubiquitinação das proteínas é importante na regulação de mecanismos celulares. Conclui-se que a ubiquitina está envolvida em muitos processos celulares, muitos ainda não esclarecidos ou totalmente identificados. Para além do seu envolvimento na degradação de proteínas ou na regulação, também é de notar o recrutamento desta proteína por proteínas virais nas suas estratégias de sobrevivência no que diz respeito a células infectadas. Têm sido identificadas várias doenças genéticas, as quais apresentam disfunções no mecanismo de ubiquitinação, nomeadamente, mutações na enzima E3.

Texto escrito por:
Ana Rita Oliveira
Celina Pereira
Luís Almeida
Margarida Antelo
Raquel Azevedo


.

quarta-feira, 9 de agosto de 2017

Ligação glicosídica



A ligação glicosídica é uma ligação covalente que, por definição, envolve o carbono anomérico de um monossacarídeo. Ao contrário do que muita gente pensa, a ligação glicosídica não tem que ser obrigatoriamente entre dois monossacarídeos, basta pensar no que acontece nos nucleótidos, por exemplo, onde a ribose estabelece uma ligação glicosídica com a base azotada. Claro que também pode envolver dois monossacarídeos, como é o caso das ligações existentes nos oligossacarídeos ou polissacarídeos, mas não é obrigatório que isso aconteça.
Quando se estabelece uma ligação glicosídica, é libertada uma molécula de água, sendo, por isso, uma reação de condensação. O átomo de oxigénio e um hidrogénio são libertados do carbono anomérico, enquanto que o segundo átomo de hidrogénio é libertado pelo átomo ao qual o carbono anomérico se vai ligar. 
Uma vez que o monossacarídeo envolvido na ligação glicosídica (ou os monossacarídeos, se for esse o caso) perde átomos em relação à sua composição original, passa a designar-se “de resíduo” de monosscarídeo. Por isso é que muitas vezes se ouve dizer, por exemplo, que a sacarose é composta por um resíduo de glucose e um resíduo de frutose…
Consoante o tipo de átomo ao qual se liga o carbono anomérico, a ligação glicosídica recebe um nome diferente. Sendo assim, existem dois tipos de ligações glicosídicas, as do tipo O e as do tipo N. Ou seja, no caso das ligações O-glicosídicas, o carbono anomérico está ligado a um átomo de oxigénio, enquanto que nas N-glicosídicas, está ligado a um átomo de azoto. 
Além desta designação, também é vulgar as ligações glicosídicas serem chamadas de alfa ou beta. Essa nomenclatura depende da configuração do carbono anomérico envolvido na ligação glicosídica (mais informações sobre esse assunto aqui). Ou seja, se o carbono anoméico estiver na configuração alfa, a ligação é do tipo alfa, se estiver na configuração beta, a ligação é do tipo beta.
Por último, gostaria de destacar que quando um monossacarídeo estabelece uma ligação glicosídica, deixa de ser um açúcar redutor, pois deixa de ter o seu carbono anomérico livre (em breve irei colocar um post aqui no blog sobre esse assunto). 
.

terça-feira, 25 de julho de 2017

Termogenina

A termogenina (UCP1) foi a primeira proteína desacopladora a ser descoberta, no ano 1978. É uma proteína transmembranar presente na membrana interna das mitocôndrias.                    
Os desacopladores são substâncias que provocam a separação funcional entre a oxidação do NADH ou FADH2 e a fosforilação do ADP a ATP. No que concerne à sua função, é de salientar que as proteínas desacopladoras, neste caso a termogenina, fornecem uma via alternativa para os protões (H+) passarem do espaço intermembranar da mitocôndria para a matriz mitocondrial sem se relacionarem com a enzima ATP sintase (complexo F0F1). A energia do gradiente eletroquímico gerado não é direcionada para a síntese de ATP, mas sim para a produção de calor. Existem várias vias metabólicas que utilizam vários substratos (glucose e ácidos gordos) para reduzir transportadores de protões como o NAD+ e o FAD+, que após receberem estes protões, passam a ser denominados de NADH E FADH2, respetivamente. São exemplos destas vias a glicólise, ciclo de Krebs, e oxidação de ácidos gordos. Seguidamente, estes transportadores de protões serão o substrato da cadeia respiratória, onde através da sua oxidação há a produção de energia química sobre a forma de ATP (Adenosina Trifosfato). Este processo ocorre na matriz mitocondrial e consiste na transferência de protões ao longo de uma cadeia de transportadores que é constituída por 4 complexos. Estes protões atravessam a membrana interna de acordo com o gradiente de concentração através de proteínas transmembranares, passando para o espaço intermembranar; de seguida os protões vão retornar à matriz mitocondrial com o recurso a ATP-sintases que utilizam a energia deste transporte para sintetizar ATP a partir de ADP e Pi. O aceitador final dos protões depende de organismo para organismo, sendo que no caso dos seres aeróbios é o O2.                                                            
O tecido adiposo é classificado em dois tipos que apresentam distribuição, fisiologia, estrutura e patologia diferentes. Um deles é o tecido adiposo comum, amarelo ou unilocular (gordura branca), que quando as células estão completamente desenvolvidas, apresentam uma única gotícula de gordura que ocupa quase todo o citoplasma. O outro tipo é o tecido adiposo multilocular, também conhecido como gordura castanha, que apresenta adipócitos com numerosas gotículas lipídicas e muitas mitocôndrias, que lhe conferem a cor castanha.                   
Nos seres humanos, a gordura castanha só apresenta quantidades significativas nos recém-nascidos, com função auxiliar na termorregulação. Ao ser estimulado pela libertação da noradrenalina nas terminações nervosas abundantes em torno das suas células, o tecido adiposo multilocular acelera a lipólise e a oxidação de ácidos gordos. O calor produzido vai aquecer o sangue contido nos capilares do tecido multilocular e é distribuído pelo corpo, aquecendo os diversos órgãos. A atividade desta proteína é também estimulada em muitos animais aquando da sua hibernação.                                      A produção de termogenina é frequentemente estimulada quando consumimos uma refeição hipercalórica, sendo uma forma de gastar energia em excesso de modo a manter o balanço energético (e assim o peso corporal).

Texto escrito por:
Ângela Barbosa
Carla Rocha
Diogo Dinis
Diogo Assis
Marco Ferreira 
.

quarta-feira, 19 de julho de 2017

Hidratos de carbono – derivados de monossacarídeos



Os monossacarídeos são as unidades estruturais de todos os hidratos de carbono, são os seus blocos de construção (mais informações sobreesse assunto aqui). Globalmente obedecem à fórmula química CH2On, ou seja, existe a proporção de o equivalente a uma molécula de água (2 hidrogénios e 1 oxigénio) para cada carbono, sendo por isso que surgiu o nome hidratos de carbono. No entanto, existem também monosscarídeos que não obedecem a esta fórmula química, ou seja, são monossacarídeos que surgem por modificação (bio)química dos monossacarídeos originais. Essa modificação pode envolver a remoção de um ou mais átomos, ou a mudança/alteração de grupos funcionais. Estes é que são os chamados derivados de monossacarídeos, ou derivados de açúcar. Devido à sua elevada variabilidade, não há grandes generalizações que se possam fazer em relação aos derivados de monossacarídeos, pois as suas características físico-químicas dependem muito de qual a modificação química que lhes deu origem, mas o objetivo é sempre o mesmo: conferir propriedades novas a essas moléculas, propriedades que não poderiam existir se se tratassem de monossacarídeos “puros”.
Não pensem que estes derivados de monossacarídeos são moléculas muito raras, com funções específicas (apesar de alguns derem exatamente isso). O derivado mais “famoso/conhecido” é a desoxirribose. Esta molécula deriva da ribose, através da remoção de um átomo de oxigénio (daí o prefixo “desoxi”), sendo um elemento fundamental para o DNA, entrando na composição de cada desoxirribonucleótido. 
A fucose é também um derivado de monossacarídeo (neste caso da galactose) presente em glicoproteínas, sendo por isso importante para a composição e função de glicoproteínas e glicosaminoglicanos das células dos mamíferos, insetos e plantas. Quer a desoxirribose que a fucose pertence à família dos desoxiaçúcares.
A glucosamina e a galactosamina são aminoaçúcares (monossacarídeos com um grupo amina), muito importantes como blocos de construção de glicosaminoglicanos. Derivam da glucose e da galactose, respetivamente.
Estes grupos amina podem ainda sofrer modificações adicionais, originando, por exemplo, N-acetilglucosamina ou N-acetilgalactosamina.
Outra família importante de derivados de monossacarídeos são os derivados acídicos. Neste caso podemos ter dois tipos diferentes os ácidos –ónicos e os ácidos –urónicos. Os primeiros surgem quando o grupo carbonilo de um monossacarídeo é oxidado a grupo carboxílico. Se isso acontecer à glucose, por exemplo, obtém-se o ácido glucónico. Os segundos surgem quando é o último grupo hidroxilo da cadeia que sofre oxidação a grupo carboxílico. Por exemplo, se glucose sofrer este tipo de modificação, obtém-se o ácido glucorónico. Estes derivados de açúcar são importantes constituintes de glicosaminoglicanos, por exemplo.

sábado, 15 de julho de 2017

Queratina

A queratina é uma proteína secundária, com forma tridimensional de α-hélice (α-queratina) ou de folhas-β-pregueadas (β-queratina) e constituída por cerca de 21 aminoácidos ligados entre si através de pontes de hidrogénio. O principal aminoácido que compõe a queratina é a cisteína que, por ser um aminoácido sulfurado, ou seja, que apresenta o elemento enxofre na sua estrutura, estabelece entre si um tipo de ligação covalente denominada ligação cisteídica, que se dá entre dois átomos de enxofre (S-S).A queratina é sintetizada em células diferenciadas - queratinócitos - do tecido epitelial  (pele) e invaginações da epiderme para a derme  (como os cabelos e unhas) de animais terrestres. Devido à sua estrutura tridimensional, esta proteína possui propriedades particulares como microfilamentos com resistência (relacionada com as ligações cisteídicas da cadeia), elasticidade e impermeabilidade à água.
Esta proteína forma uma camada que envolve as células da epiderme (camada mais externa da pele), de modo a evitar perdas desnecessárias de água e, também, proteger o organismo contra agressões externas, tais como choques mecânicos, radiação solar, ventos e chuvas. As células queratinizadas mesmo estando mortas conseguem desempenhar tais funções, porque primeiro detêm microrganismos que auxiliam na retenção de água, depois porque formam uma camada protetora, que evita agressões às células vivas.
Nos mamíferos, além da epiderme, a queratina também é encontrada nas unhas, cabelos, cascos, chifres e garras. Nas aves, as penas e os bicos são estruturas queratinizadas. As escamas dos répteis, as “barbas de baleia”, a carapaça dos cágados, os espinhos do porco-espinho e as barbatanas dos peixes também são ricos em queratina.
Esta proteína é muito usada pela indústria de cosméticos, como na composição de champos, condicionadores, cremes, vernizes, restauradores capilares, cremes alisantes e produtos de higiene pessoal. É muito utilizada em tratamentos capilares, por ser a principal substância que compõe os cabelos, estes que estão destinados à reposição da proteína perdida diariamente por meio de agressões físicas e químicas. A queratina também é utilizada no alongamento de cabelos, que transforma os fios de cabelo com os seus polímeros, tornando os cabelos mais fracos mas mais longos.

Texto escrito por:
Beatriz Gonçalves
Bernardo Machado
Lindoro Salgado
Mafalda Cunha Gomes
.

quinta-feira, 13 de julho de 2017

terça-feira, 11 de julho de 2017

Ciclização dos monossacarídeos



Conforme referi num post anterior (podem consultá-lo aqui), os monossacarídeos são polihidroxialdeídos ou polihidroxicetonas, que existem sob duas formas (para monossacarídeos com mais do que 4 carbonos): forma aberta e forma cíclica. Ambas encontram-se em equilíbrio, sendo que a interconversão entre elas não requer a atuação de nenhuma enzima. Em solução os monossacarídeos tendem a estar predominantemente sob a forma cíclica (mas sempre em equilíbrio com a forma aberta), passando a apresentar-se sob a forma de dois isómeros, que, neste caso, se designam de anómeros (mais informação sobre este assunto mais à frente). Existem dois tipos de estruturas cíclicas que podem ser formadas: uma estrutura pentagonal que, devido à semelhança com o composto químico furano faz com que os monossacarídeos sejam classificados como furanoses; uma estrutura hexagonal que, devido a ser parecida com o pirano, faz com que os monossacarídeos sejam classificados de piranoses.
Hoje decidi escrever sobre o processo de ciclização dos monossacarídeos. Trata-se de uma reação química intracelular, ou seja, que ocorre dentro da própria molécula, e requer dois intervenientes diferentes, o grupo carbonilo (que pode ser aldeído ou cetona) e um grupo hidroxilo. Na realidade o que vai acontecer é que esse grupo hidroxilo vai reagir com o grupo carbonilo, formando uma ligação “éter”. Na realidade não é um grupo éter que se forma (e por isso eu usei as aspas), pois um dos carbonos desse suposto grupo éter tem também um grupo hidroxilo. O nome correto depende de qual foi o monossacarídeo que sofreu ciclização. Se foi uma aldose (monossacarídeo no qual o grupo carbonilo é um grupo aldeído), então o novo grupo funcional designa-se de hemiacetal. 

Se foi uma cetose, então designa-se de hemicetal. 
Ou seja, a diferença entre ambos está no facto de o grupo hemiacetal se encontrar na extremidade da molécula, enquanto que o hemicetal se encontra numa posição interna. Em ambos os casos, estamos a falar num carbono que está ligado a um grupo –OH e simultaneamente a um grupo –O-R.

Uma vez que os hidratos de carbono, para serem redutores, devem possuir pelo menos um grupo carbonilo, e que, na forma cíclica, o grupo carbonilo deixa de existir, pode-se dizer que os hidratos de carbono só são redutores na forma aberta.
O carbono que apresentava o grupo carbonilo na forma aberta, e que, consequentemente, não era quiral (pois o grupo carbonilo tem uma ligação dupla entre o carbono e o oxigénio), passa a ser quiral, o que significa que, na forma cíclica, os monossacarídeos apresentam mais carbonos quirais e, por isso, mais estereoisómeros. Esse carbono que passou a ser quiral designa-se de carbono anomérico e os isómeros que diferem entre si apenas na configuração do carbono anomérico chama-se anómeros. Os anómeros são classificados com as letras alfa e beta, e é por isso que muitas vezes se vê esta letra associada ao nome do monossacarídeo. 
Também é por isso que nos referimos às ligações glicosídicas como sendo do tipo alfa ou beta, mas vou deixar esse assunto para um post futuro…
.

sexta-feira, 7 de julho de 2017

Amilase salivar

A ptialina ou alfa-amilase salivar é uma enzima da saliva que apresenta um pH óptimo de aproximadamente 7,0 (neutro) e uma temperatura óptima de atuação entre 35ºC e 40ºC sendo que a mesma é inactivada a temperaturas inferiores a 35ºC e desnaturada quando ultrapassa os 40ºC. A ptialina é produzida pelas glândulas salivares, em especial pela glândula parótida. Esta enzima juntamente com sais minerais e muco formam a saliva. A presença de um alimento na cavidade bucal e estímulos psicológicos levam à secrecão de saliva contendo a enzima ptialina. A ptialina atua sobre o amido e glicogénio ingeridos, catalisando a hidrólise das ligações alfa-1,4, o que dá origem a pequenos dissacarídeos de maltose . Além disso, a sua exposição ao substrato ocorre de forma muito rápida (restrita ao tempo de mastigação) daí a importância de se mastigar vagarosamente, pois assim, o contacto da ptialina com o polissacarídeo é prolongado e a sua ação é potencializada. Em suma a principal função desta proteína é iniciar a digestão dos carbohidratos, facilitando a sua digestão nos intestinos, sendo que ao chegar ao estômago, onde o pH é muito ácido, a enzima torna-se inativa. 

A continuação da digestão dos carbohidratos irá dar-se no intestino delgado, mais propriamente no jejuno aonde outra amilase, a amilase pancreática, em conjunto com os sais biliares irá clivar as ligações das moléculas de maltose, formando duas moléculas de glicose as quais irão ser absorvidas pelo intestino.
Para além disso a amilase salivar tem um fator protector contra as cáries dentarias. Os resíduos de alimentos ricos em carbohidratos que permanecem nos dentes após a mastigação propiciam o crescimento de bactérias, que produzem ácidos capazes de corroer o esmalte dental, causando cáries. A ptialina sintetiza os polissacarídeos desses resíduos, evitando que tais bactérias cresçam e se multipliquem. É por isso que indivíduos que produzem um maior fluxo de saliva têm menor tendência a desenvolver cáries dentárias.


Texto escrito por:
Amadeu Barroco
Catarina Teixeira
Marly Gonçalves
Pedro Pinto
.

segunda-feira, 3 de julho de 2017

Hidratos de carbono – monossacarídeos

Os monossacarídeos são os hidratos de carbono mais simples. Quimicamente são definidos como sendo poli-hidroxialdeídos ou poli-hidroxicetonas, consoante o grupo carbonilo está na extremidade da molécula ou numa posição intermédia. 
Existem muitas formas diferentes de classificar os monossacarídeos, sendo que as mais comuns baseiam-se em:
- número de carbonos – nesta classificação utiliza-se o sufixo “ose” e um prefixo relativo ao número de carbonos. O número mínimo de carbonos que um monossacarídeo pode apresentar são 3 (o gliceraldeído e a dihidroxiacetona são os dois monossacarídeos mas simples que existem). Podem ser trioses, tetroses, pentoses, hexoses, heptoses, …
- posição do grupo carbonilo – nesta classificação utiliza-se o sufixo “ose” e um prefixo relativo à posição do grupo carbonilo. Podem ser aldoses ou cetoses.
- mistura das duas nomenclaturas anteriores – nesta classificam-se utilizam-se ambas as nomenclaturas que descrevi anteriormente. Podem ser aldotrioses, cetotrioses, aldotetroses, cetotetroses, …
Os monossacarídeos são os responsáveis pelos nome hidrato de carbono, pois a sua fórmula química é CH2On, ou seja, para cada carbono existe uma “molécula de água” (na realidade, o que existe é um hidrogénio e um grupo hidroxilo).
Os monossacarídeos desempenham muitas funções importantes para o nosso organismo, sendo que talvez a mais conhecida seja a de combustível metabólico. Outra função igualmente conhecida, é a da ribose, que entra na composição dos nucleótidos.
Devido ao facto de apresentarem muitos grupos funcionais polares, são hidrossolúveis, sendo que a maioria possui um sabor doce.
Todos os monossacarídeos, com exceção da dihidroxiacetona, apresentam estereoisómeros, sendo que o número total depende do número de carbonos do açúcar, bem como do facto de se tratar de uma aldose ou cetose.
.

sexta-feira, 30 de junho de 2017

Cartoon sobre análise ao DNA

Numa altura em que os testes genéticos estão cada vez mais na moda, aqui fica uma perspetiva diferente da análise ao DNA. :)

quarta-feira, 28 de junho de 2017

Fosfofrutocinase 1

A fosfofrutocinase 1, também conhecida como PFK-1, é a segunda enzima regulatória da glicólise e o seu principal ponto de regulação. É uma enzima alostérica pertencente à família das fosfotransferases que catalisa uma fosforilação: a conversão de frutose-6-fosfato e ATP em frutose-1,6-bisfosfato e ADP, um passo chave na regulação e limitação da taxa de glicólise, em resposta às necessidades energéticas da célula, através do processo de inibição alostérica.A regulação alostérica é a forma mais rápida de regulação específica de determinadas enzimas – as enzimas regulatórias. Requer a presença de moléculas, os moduladores alostéricos, que interatuam com as enzimas, conduzindo a alterações estruturais, tornando a enzima ou mais rápida (moduladores positivos) ou mais lenta (moduladores negativos).
A nível estrutural, apresenta-se como um homotetrâmero, ou seja, é constituída por 4 subunidades. A PFK-1 pode ser composta por três tipos de formas: M, L ou P, dependendo do tipo de tecido em que se encontra. Por exemplo, o músculo expressa apenas a isoenzima M. Já no fígado e rins predomina a isoforma L. Quanto aos eritrócitos expressam ambas as formas M e L.
Cada subunidade deste tetrâmero possui 319 aminoácidos e é composto por dois domínios: um que se liga ao ATP e o outro que se liga à frutose-6-fosfato.
O domínio N-terminal possui um papel de catalisador de ligação de ATP, enquanto que o terminal C apresenta um papel regulador.
A atividade da PFK-1 depende de um mecanismo em que ocorre transição de um estado T enzimaticamente inativo para um estado R ativo. Se, por um lado, a frutose-6-fosfato se liga, com elevada afinidade, ao estado R, já a mudança para o estado T inibe a sua capacidade de se ligar à enzima.
A atividade desta enzima é controlada por ativadores e inibidores. Por um lado, os ativadores podem ser indicadores de défice energético (ADP, AMP), já que a glicólise pretende compensar esse défice; ou o substrato da reação que catalisa (frutose-6-fosfato), entre outros ativadores. Por outro lado, como inibidores existem o ATP, visto que, se a célula já possuir ATP suficiente, faz todo o sentido que a glicólise seja inibida; o produto da reação (frutose-1,6-bisfosfato), assim como todos os intermediários gerados nas reações seguintes; os intermediários do ciclo de Krebs, se houver acumulação destes intermediários, não será necessário continuar o processo de glicólise; o glucagon, dado que, esta hormona é produzida em situações de hipoglicemia e tem como objetivo elevar a concentração de glucose no sangue, não fazendo sentido gastá-la; entre outros inibidores.
Os ativadores alostéricos ligam-se com o objectivo de facilitar a formação do estado R, induzindo alterações estruturais na enzima, já os inibidores ligam-se para facilitar a formação do estado T inibindo, assim, a atividade da enzima.



Texto escrito por:
Ana Maria Araújo
Ana Sofia Oliveira
Maria Sofia Silva
Renata Teixeira
.